<aside> 💡 N = no. of hops L = Message length, in bits B = Data rate (Bandwidth) P = Fixed packet size, in bits H = Overhead (header) bits per packet S = Call setup time D = propagation delay per hop in seconds
</aside>
<aside> 💡 Steps
$$ \text{End to End Delay} = \text{Call setup} + \text{Propagation delay} + \text{Message time} $$
$$ \text{Propagation Delay } = D *N $$
</aside>
<aside> 💡 Steps
$$ \text{no. of packets} = \frac{L}{P} $$
$$ \text{packet size} = P + H $$
$$ \text{Packet Time} = \frac{\text{Packet Size}}{B} $$
$$ \text{End to End Delay for one packet} = \text{Call setup} + \text{Propagation delay} + \text{Packet time} $$
$$ \text{End to End Delay for all packets} = \text{End to End Delay for one packet } * \text{ No. of Packets} $$
</aside>
<aside> 💡 Steps
$$ \text{End to End Delay} = \text{End to End Delay of Virtual Swiching} - \text{Call Set Up} $$
</aside>
$$ \text {No . of hops} = \frac{W_s}{f_d} $$
$$ \text{The Miniumm no. of PN bits} = \log_2{\text{(No. of pf hops)}} $$